The largest machine in the world...
The precise circumference of the LHC accelerator is 26 659 m, with a total of 9300 magnets inside. Not only is the LHC the world’s largest particle accelerator, just one-eighth of its cryogenic distribution system would qualify as the world’s largest fridge. All the magnets will be pre‑cooled to -193.2°C (80 K) using 10 080 tonnes of liquid nitrogen, before they are filled with nearly 60 tonnes of liquid helium to bring them down to -271.3°C (1.9 K).
The fastest racetrack on the planet...
At full power, trillions of protons will race around the LHC accelerator ring 11 245 times a second, travelling at 99.99% the speed of light. Two beams of protons will each travel at a maximum energy of 7 TeV (tera-electronvolt), corresponding to head-to-head collisions of 14 TeV. Altogether some 600 million collisions will take place every second.
The emptiest space in the Solar System...
To avoid colliding with gas molecules inside the accelerator, the beams of particles travel in an ultra-high vacuum – a cavity as empty as interplanetary space. The internal pressure of the LHC is 10-13 atm, ten times less than the pressure on the Moon!
The hottest spots in the galaxy, but even colder than outer space...
The LHC is a machine of extreme hot and cold. When two beams of protons collide, they will generate temperatures more than 100 000 times hotter than the heart of the Sun, concentrated within a minuscule space. By contrast, the 'cryogenic distribution system', which circulates superfluid helium around the accelerator ring, keeps the LHC at a super cool temperature of -271.3°C (1.9 K) – even colder than outer space!
The biggest and most sophisticated detectors ever built...
To sample and record the results of up to 600 million proton collisions per second, physicists and engineers have built gargantuan devices that measure particles with micron precision. The LHC's detectors have sophisticated electronic trigger systems that precisely measure the passage time of a particle to accuracies in the region of a few billionths of a second. The trigger system also registers the location of the particles to millionths of a metre. This incredibly quick and precise response is essential for ensuring that the particle recorded in successive layers of a detector is one and the same.
No comments:
Post a Comment